16 research outputs found

    Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds.

    Get PDF
    Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. Our group has recently synthesised a novel polycaprolactone based polyurethane-urea copolymer that shows improved mechanical properties compared to its previously published counterparts. The aim of this study was to explore whether indirect 3D printing could provide a means to fabricate this novel, biodegradable polymer into a scaffold suitable for cardiac tissue engineering. Indirect 3D printing was carried out through printing water dissolvable poly(vinyl alcohol) porogens in three different sizes based on a wood-stack model, into which a polyurethane-urea solution was pressure injected. The porogens were removed, leading to soft polyurethane-urea scaffolds with regular tubular pores. The scaffolds were characterised for their compressive and tensile mechanical behaviour; and their degradation was monitored for 12 months under simulated physiological conditions. Their compatibility with cardiac myocytes and performance in novel cardiac engineering-related techniques, such as aggregate seeding and bi-directional perfusion, was also assessed. The scaffolds were found to have mechanical properties similar to cardiac tissue, and good biocompatibility with cardiac myocytes. Furthermore, the incorporated cells preserved their phenotype with no signs of de-differentiation. The constructs worked well in perfusion experiments, showing enhanced seeding efficiency. This article is protected by copyright. All rights reserved

    Osteogenic potential of murine periosteum for critical-size cranial defects.

    Get PDF
    Tissue engineering of bone has combined bespoke scaffolds and osteoinductive factors to maintain functional osteoprogenitor cells, and the periosteum has been confirmed as a satisfactory source of osteoblasts. Suitable matrices have been identified that support cell proliferation and differentiation, including demineralised bone matrix (both compatible and osteoinductive) and acellular human dermis. We have evaluated the osteogenic potential of an osteogenic unit, developed by combining periosteum, demineralised bone matrix, and acellular human dermis, in rodents with critical-size cranial defects. Briefly, remnants from the superior maxillary periosteum were used to harvest cells, which were characterised by flow cytometry and reverse retrotranscriptase-polymerase chain reaction (RT-PCR). Cells were cultured into the osteogenic unit and assessed for viability before being implanted into 3 rodents, These were compared with the control group (n=3) after three months. Histological analyses were made after staining with haematoxylin and eosin and Von Kossa, and immunostaining, and confirmed viable cells that stained for CD90, CD73, CD166, runt-related transcription factor, osteopontin, and collagen type I in the experimental group, while in the control group there was only connective tissue on the edges of the bone in the injury zone. We conclude that osteogenic unit constructs have the osteogenic and regenerative potential for use in engineering bone tissue
    corecore